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TO THE STUDENT

HOW TO SUCCEED IN
PHYSICS BY REALLY
TRYING
Mark Hollabaugh Normandale Community College

Physics encompasses the large and the small, the old and the new. From the atom
to galaxies, from electrical circuitry to aerodynamics, physics is very much a part
of the world around us. You probably are taking this introductory course in calculus-
based physics because it is required for subsequent courses you plan to take in
preparation for a career in science or engineering. Your professor wants you to
learn physics and to enjoy the experience. He or she is very interested in helping
you learn this fascinating subject. That is part of the reason your professor chose
this textbook for your course. That is also the reason Drs. Young and Freedman
asked me to write this introductory section. We want you to succeed!

The purpose of this section of University Physics is to give you some ideas
that will assist your learning. Specific suggestions on how to use the textbook
will follow a brief discussion of general study habits and strategies.

Preparation for This Course
If you had high school physics, you will probably learn concepts faster than those
who have not because you will be familiar with the language of physics. If Eng-
lish is a second language for you, keep a glossary of new terms that you
encounter and make sure you understand how they are used in physics. Likewise,
if you are farther along in your mathematics courses, you will pick up the mathe-
matical aspects of physics faster. Even if your mathematics is adequate, you may
find a book such as Arnold D. Pickar’s Preparing for General Physics: Math Skill
Drills and Other Useful Help (Calculus Version) to be useful. Your professor
may actually assign sections of this math review to assist your learning.

Learning to Learn
Each of us has a different learning style and a preferred means of learning.
Understanding your own learning style will help you to focus on aspects of
physics that may give you difficulty and to use those components of your course
that will help you overcome the difficulty. Obviously you will want to spend
more time on those aspects that give you the most trouble. If you learn by hear-
ing, lectures will be very important. If you learn by explaining, then working
with other students will be useful to you. If solving problems is difficult for you,
spend more time learning how to solve problems. Also, it is important to under-
stand and develop good study habits. Perhaps the most important thing you can
do for yourself is to set aside adequate, regularly scheduled study time in a
distraction-free environment.

Answer the following questions for yourself:
• Am I able to use fundamental mathematical concepts from algebra, geometry

and trigonometry? (If not, plan a program of review with help from your
professor.)

• In similar courses, what activity has given me the most trouble? (Spend more
time on this.) What has been the easiest for me? (Do this first; it will help to
build your confidence.)

From the Preface of University Physics with Modern Physics, Technology Update, 13th Edition. Hugh D. Young, Roger A. Freedman.
Copyright © 2014 by Pearson Education, Inc. All rights reserved.
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• Do I understand the material better if I read the book before or after the lec-

ture? (You may learn best by skimming the material, going to lecture, and then

undertaking an in-depth reading.)

• Do I spend adequate time in studying physics? (A rule of thumb for a class

like this is to devote, on the average, 2.5 hours out of class for each hour in

class. For a course meeting 5 hours each week, that means you should spend

about 10 to 15 hours per week studying physics.)

• Do I study physics every day? (Spread that 10 to 15 hours out over an entire

week!) At what time of the day am I at my best for studying physics? (Pick a

specific time of the day and stick to it.)

• Do I work in a quiet place where I can maintain my focus? (Distractions will

break your routine and cause you to miss important points.)

Working with Others
Scientists or engineers seldom work in isolation from one another but rather

work cooperatively. You will learn more physics and have more fun doing it if

you work with other students. Some professors may formalize the use of cooper-

ative learning or facilitate the formation of study groups. You may wish to form

your own informal study group with members of your class who live in your

neighborhood or dorm. If you have access to e-mail, use it to keep in touch with

one another. Your study group is an excellent resource when reviewing for

exams.

Lectures and Taking Notes
An important component of any college course is the lecture. In physics this is

especially important because your professor will frequently do demonstrations of

physical principles, run computer simulations, or show video clips. All of these are

learning activities that will help you to understand the basic principles of physics.

Don’t miss lectures, and if for some reason you do, ask a friend or member of your

study group to provide you with notes and let you know what happened.

Take your class notes in outline form, and fill in the details later. It can be very

difficult to take word for word notes, so just write down key ideas. Your professor

may use a diagram from the textbook. Leave a space in your notes and just add

the diagram later. After class, edit your notes, filling in any gaps or omissions and

noting things you need to study further. Make references to the textbook by page,

equation number, or section number.

Make sure you ask questions in class, or see your professor during office

hours. Remember the only “dumb” question is the one that is not asked. Your col-

lege may also have teaching assistants or peer tutors who are available to help

you with difficulties you may have.

Examinations
Taking an examination is stressful. But if you feel adequately prepared and are

well-rested, your stress will be lessened. Preparing for an exam is a continual

process; it begins the moment the last exam is over. You should immediately go

over the exam and understand any mistakes you made. If you worked a problem

and made substantial errors, try this: Take a piece of paper and divide it down the

middle with a line from top to bottom. In one column, write the proper solution to

the problem. In the other column, write what you did and why, if you know, and

why your solution was incorrect. If you are uncertain why you made your mis-

take, or how to avoid making it again, talk with your professor. Physics continu-

ally builds on fundamental ideas and it is important to correct any

misunderstandings immediately. Warning: While cramming at the last minute

may get you through the present exam, you will not adequately retain the con-

cepts for use on the next exam.

How to Succeed in Physics by Really Trying
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TO THE INSTRUCTOR

PREFACE
This book is the product of more than six decades of leadership and innovation in
physics education. When the first edition of University Physics by Francis W.
Sears and Mark W. Zemansky was published in 1949, it was revolutionary
among calculus-based physics textbooks in its emphasis on the fundamental prin-
ciples of physics and how to apply them. The success of University Physics with
generations of several million students and educators around the world is a testa-
ment to the merits of this approach, and to the many innovations it has introduced
subsequently.

In preparing this new Thirteenth Edition, we have further enhanced and
developed University Physics to assimilate the best ideas from education
research with enhanced problem-solving instruction, pioneering visual and
conceptual pedagogy, the first systematically enhanced problems, and the most
pedagogically proven and widely used online homework and tutorial system in
the world.

New to This Edition
• Included in each chapter, Bridging Problems provide a transition between the

single-concept Examples and the more challenging end-of-chapter problems.
Each Bridging Problem poses a difficult, multiconcept problem, which often
incorporates physics from earlier chapters. In place of a full solution, it
provides a skeleton Solution Guide consisting of questions and hints, which
helps train students to approach and solve challenging problems with
confidence.

• All Examples, Conceptual Examples, and Problem-Solving Strategies are
revised to enhance conciseness and clarity for today’s students.

• The core modern physics chapters (Chapters 38–41) are revised extensively
to provide a more idea-centered, less historical approach to the material.
Chapters 42–44 are also revised significantly.

• The fluid mechanics chapter now precedes the chapters on gravitation
and periodic motion, so that the latter immediately precedes the chapter on
mechanical waves.

• Additional bioscience applications appear throughout the text, mostly in the
form of marginal photos with explanatory captions, to help students see how
physics is connected to many breakthroughs and discoveries in the biosciences.

• The text has been streamlined for tighter and more focused language.
• Using data from MasteringPhysics, changes to the end-of-chapter content

include the following:
• 15%–20% of problems are new.
•  The number and level of calculus-requiring problems has been increased.
• Most chapters include five to seven biosciences-related problems.
• The number of cumulative problems (those incorporating physics from

earlier chapters) has been increased.
• Over 70 PhET simulations are linked to the Pearson eText and provided in

the Study Area of the MasteringPhysics website (with icons in the print text).
These powerful simulations allow students to interact productively with the
physics concepts they are learning. PhET clicker questions are also included
on the Instructor Resource DVD.

• Video Tutors bring key content to life throughout the text:
• Dozens of Video Tutors feature “pause-and-predict” demonstrations of

key physics concepts and incorporate assessment as the student progresses
to actively engage the student in understanding the key conceptual ideas
underlying the physics principles.

Standard, Extended,
and Three-Volume Editions

With MasteringPhysics:
• Standard Edition: Chapters 1–37

(ISBN 978-0-321-69688-5)
• Extended Edition: Chapters 1–44

(ISBN 978-0-321-67546-0)

Without MasteringPhysics:
• Standard Edition: Chapters 1–37

(ISBN 978-0-321-69689-2)
• Extended Edition: Chapters 1–44

(ISBN 978-0-321-69686-1)
• Volume 1: Chapters 1–20

(ISBN 978-0-321-73338-2)
• Volume 2: Chapters 21–37

(ISBN 978-0-321-75121-8)
• Volume 3: Chapters 37–44

(ISBN 978-0-321-75120-1)

Video Tutor
Demo
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• Every Worked Example in the book is accompanied by a Video Tutor
Solution that walks students through the problem-solving process, provid-

ing a virtual teaching assistant on a round-the-clock basis.

• All of these Video Tutors play directly through links within the Pearson
eText. Many also appear in the Study Area within MasteringPhysics.

Key Features of University Physics
• Deep and extensive problem sets cover a wide range of difficulty and exer-

cise both physical understanding and problem-solving expertise. Many prob-

lems are based on complex real-life situations.

• This text offers a larger number of Examples and Conceptual Examples than

any other leading calculus-based text, allowing it to explore problem-solving

challenges not addressed in other texts.

• A research-based problem-solving approach (Identify, Set Up, Execute,
Evaluate) is used not just in every Example but also in the Problem-Solving

Strategies and throughout the Student and Instructor Solutions Manuals and

the Study Guide. This consistent approach teaches students to tackle problems

thoughtfully rather than cutting straight to the math.

• Problem-Solving Strategies coach students in how to approach specific types

of problems.

• The Figures use a simplified graphical style to focus on the physics of a situa-

tion, and they incorporate explanatory annotation. Both techniques have

been demonstrated to have a strong positive effect on learning.

• Figures that illustrate Example solutions often take the form of black-and-

white pencil sketches, which directly represent what a student should draw in

solving such a problem.

• The popular Caution paragraphs focus on typical misconceptions and stu-

dent problem areas.

• End-of-section Test Your Understanding questions let students check their

grasp of the material and use a multiple-choice or ranking-task format to

probe for common misconceptions.

• Visual Summaries at the end of each chapter present the key ideas in words,

equations, and thumbnail pictures, helping students to review more effectively.

Instructor Supplements
Note: For convenience, all of the following instructor supplements (except for the
Instructor Resource DVD) can be downloaded from the Instructor Area, accessed
via the left-hand navigation bar of MasteringPhysics (www.masteringphysics.com).

Instructor Solutions, prepared by A. Lewis Ford (Texas A&M University)

and Wayne Anderson, contain complete and detailed solutions to all end-of-

chapter problems. All solutions follow consistently the same Identify/Set Up/

Execute/Evaluate problem-solving framework used in the textbook. Download

only from the MasteringPhysics Instructor Area or from the Instructor

Resource Center (www.pearsonhighered.com/irc).

The cross-platform Instructor Resource DVD (ISBN 978-0-321-69661-8) pro-

vides a comprehensive library of more than 420 applets from ActivPhysics

OnLine as well as all line figures from the textbook in JPEG format. In addition,

all the key equations, problem-solving strategies, tables, and chapter summaries

are provided in editable Word format. In-class weekly multiple-choice questions

for use with various Classroom Response Systems (CRS) are also provided,

based on the Test Your Understanding questions in the text. Lecture outlines in

PowerPoint are also included along with over 70 PhET simulations.

How to Succeed in Physics by Really Trying
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How to Succeed in Physics by Really Trying

MasteringPhysics® (www.masteringphysics.com) is the most advanced, educa-

tionally effective, and widely used physics homework and tutorial system in the

world. Eight years in development, it provides instructors with a library of exten-

sively pre-tested end-of-chapter problems and rich, multipart, multistep tutorials

that incorporate a wide variety of answer types, wrong answer feedback, individ-

ualized help (comprising hints or simpler sub-problems upon request), all driven

by the largest metadatabase of student problem-solving in the world. NSF-

sponsored published research (and subsequent studies) show that Mastering-

Physics has dramatic educational results. MasteringPhysics allows instructors to

build wide-ranging homework assignments of just the right difficulty and length

and provides them with efficient tools to analyze both class trends, and the work

of any student in unprecedented detail.

MasteringPhysics routinely provides instant and individualized feedback and

guidance to more than 100,000 students every day. A wide range of tools and

support make MasteringPhysics fast and easy for instructors and students to learn

to use. Extensive class tests show that by the end of their course, an unprece-

dented eight of nine students recommend MasteringPhysics as their preferred

way to study physics and do homework.

MasteringPhysics enables instructors to:

• Quickly build homework assignments that combine regular end-of-chapter

problems and tutoring (through additional multi-step tutorial problems that

offer wrong-answer feedback and simpler problems upon request).

• Expand homework to include the widest range of automatically graded activi-

ties available—from numerical problems with randomized values, through

algebraic answers, to free-hand drawing.

• Choose from a wide range of nationally pre-tested problems that provide

accurate estimates of time to complete and difficulty.

• After an assignment is completed, quickly identify not only the problems that

were the trickiest for students but the individual problem types where students

had trouble.

• Compare class results against the system’s worldwide average for each prob-

lem assigned, to identify issues to be addressed with just-in-time teaching.

• Check the work of an individual student in detail, including time spent on

each problem, what wrong answers they submitted at each step, how much

help they asked for, and how many practice problems they worked.

ActivPhysics OnLine™ (which is accessed through the Study Area within 

www.masteringphysics.com) provides a comprehensive library of more than 420

tried and tested ActivPhysics applets updated for web delivery using the latest

online technologies. In addition, it provides a suite of highly regarded applet-

based tutorials developed by education pioneers Alan Van Heuvelen and Paul

D’Alessandris. Margin icons throughout the text direct students to specific exer-

cises that complement the textbook discussion.

The online exercises are designed to encourage students to confront miscon-

ceptions, reason qualitatively about physical processes, experiment quantitatively,

and learn to think critically. The highly acclaimed ActivPhysics OnLine compan-

ion workbooks help students work through complex concepts and understand

them more clearly. More than 420 applets from the ActivPhysics OnLine library

are also available on the Instructor Resource DVD for this text.

The Test Bank contains more than 2,000 high-quality problems, with a range of

multiple-choice, true false, short-answer, and regular homework-type questions.

Test files are provided both in TestGen (an easy-to-use, fully networkable pro-

gram for creating and editing quizzes and exams) and Word format. Download

only from the MasteringPhysics Instructor Area or from the Instructor Resource

Center (www.pearsonhighered.com irc).>

>
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Five Easy Lessons: Strategies for Successful Physics Teaching (ISBN 978-0-

805-38702-5) by Randall D. Knight (California Polytechnic State University, San

Luis Obispo) is packed with creative ideas on how to enhance any physics course.

It is an invaluable companion for both novice and veteran physics instructors.

Student Supplements
The Study Guide by Laird Kramer reinforces the text’s emphasis on problem-

solving strategies and student misconceptions. The Study Guide for Volume 1
(ISBN 978-0-321-69665-6) covers Chapters 1–20, and the Study Guide for Vol-
umes 2 and 3 (ISBN 978-0-321-69669-4) covers Chapters 21–44.

The Student Solutions Manual by Lewis Ford (Texas A&M University) and

Wayne Anderson contains detailed, step-by-step solutions to more than half of

the odd-numbered end-of-chapter problems from the textbook. All solutions fol-

low consistently the same Identify/Set Up/Execute/Evaluate problem-solving

framework used in the textbook. The Student Solutions Manual for Volume 1
(ISBN 978-0-321-69668-7) covers Chapters 1–20, and the Student Solutions
Manual for Volumes 2 and 3 (ISBN 978-0-321-69667-0) covers Chapters 21–44.

MasteringPhysics® (www.masteringphysics.com) is a homework, tutorial, and

assessment system based on years of research into how students work physics

problems and precisely where they need help. Studies show that students who use

MasteringPhysics significantly increase their scores compared to hand-written

homework. MasteringPhysics achieves this improvement by providing students

with instantaneous feedback specific to their wrong answers, simpler sub-problems

upon request when they get stuck, and partial credit for their method(s). This

individualized, 24 7 Socratic tutoring is recommended by nine out of ten students

to their peers as the most effective and time-efficient way to study.

Pearson eText is available through MasteringPhysics, either automatically when

MasteringPhysics is packaged with new books, or available as a purchased

upgrade online. Allowing students access to the text wherever they have access to

the Internet, Pearson eText comprises the full text, including figures that can be

enlarged for better viewing. With eText, students are also able to pop up defini-

tions and terms to help with vocabulary and the reading of the material. Students

can also take notes in eText using the annotation feature at the top of each page.

Pearson Tutor Services (www.pearsontutorservices.com). Each student’s subscrip-

tion to MasteringPhysics also contains complimentary access to Pearson Tutor Ser-

vices, powered by Smarthinking, Inc. By logging in with their MasteringPhysics ID

and password, students will be connected to highly qualified e-instructors who

provide additional interactive online tutoring on the major concepts of physics.

Some restrictions apply; offer subject to change.

ActivPhysics OnLine™ (which is accessed through the Study Area within 

www.masteringphysics.com) provides students with a suite of highly regarded

applet-based tutorials (see above). The following workbooks help students work

through complex concepts and understand them more clearly.

ActivPhysics OnLine Workbook, Volume 1: Mechanics * Thermal Physics *
Oscillations & Waves (978-0-805-39060-5)

ActivPhysics OnLine Workbook, Volume 2: Electricity & Magnetism *
Optics * Modern Physics (978-0-805-39061-2)

>
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LEARNING GOALS

By studying this chapter, you will

learn:

• Three fundamental quantities of

physics and the units physicists 

use to measure them.

• How to keep track of significant 

figures in your calculations.

• The difference between scalars and

vectors, and how to add and sub-

tract vectors graphically.

• What the components of a vector

are, and how to use them in 

calculations.

• What unit vectors are, and how 

to use them with components to

describe vectors.

• Two ways of multiplying vectors.

UNITS, PHYSICAL
QUANTITIES, 
AND VECTORS

Physics is one of the most fundamental of the sciences. Scientists of all dis-
ciplines use the ideas of physics, including chemists who study the struc-
ture of molecules, paleontologists who try to reconstruct how dinosaurs

walked, and climatologists who study how human activities affect the atmos-
phere and oceans. Physics is also the foundation of all engineering and technol-
ogy. No engineer could design a flat-screen TV, an interplanetary spacecraft, or
even a better mousetrap without first understanding the basic laws of physics.

The study of physics is also an adventure. You will find it challenging, some-
times frustrating, occasionally painful, and often richly rewarding. If you’ve ever
wondered why the sky is blue, how radio waves can travel through empty space,
or how a satellite stays in orbit, you can find the answers by using fundamental
physics. You will come to see physics as a towering achievement of the human
intellect in its quest to understand our world and ourselves.

In this chapter, we’ll go over some important preliminaries that we’ll need
throughout our study. We’ll discuss the nature of physical theory and the use of
idealized models to represent physical systems. We’ll introduce the systems of
units used to describe physical quantities and discuss ways to describe the accu-
racy of a number. We’ll look at examples of problems for which we can’t (or
don’t want to) find a precise answer, but for which rough estimates can be useful
and interesting. Finally, we’ll study several aspects of vectors and vector algebra.
Vectors will be needed throughout our study of physics to describe and analyze
physical quantities, such as velocity and force, that have direction as well as
magnitude.

? Being able to predict the path of a thunderstorm is essential for minimizing
the damage it does to lives and property. If a thunderstorm is moving at 
20 km h in a direction 53° north of east, how far north does the thunderstorm
move in 1 h?

>

From Chapter 1 of University Physics with Modern Physics, Technology Update, 13th Edition. Hugh D. Young, Roger A. Freedman.
Copyright © 2014 by Pearson Education, Inc. All rights reserved.
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1 The Nature of Physics

Physics is an experimental science. Physicists observe the phenomena of nature

and try to find patterns that relate these phenomena. These patterns are called

physical theories or, when they are very well established and widely used, physi-

cal laws or principles.

CAUTION The meaning of the word “theory” Calling an idea a theory does not mean that

it’s just a random thought or an unproven concept. Rather, a theory is an explanation of

natural phenomena based on observation and accepted fundamental principles. An exam-

ple is the well-established theory of biological evolution, which is the result of extensive

research and observation by generations of biologists. ❙

To develop a physical theory, a physicist has to learn to ask appropriate ques-

tions, design experiments to try to answer the questions, and draw appropriate

conclusions from the results. Figure 1 shows two famous facilities used for

physics experiments.

Legend has it that Galileo Galilei (1564–1642) dropped light and heavy

objects from the top of the Leaning Tower of Pisa (Fig. 1a) to find out whether

their rates of fall were the same or different. From examining the results of his

experiments (which were actually much more sophisticated than in the legend),

he made the inductive leap to the principle, or theory, that the acceleration of a

falling body is independent of its weight.

The development of physical theories such as Galileo’s often takes an indirect

path, with blind alleys, wrong guesses, and the discarding of unsuccessful theo-

ries in favor of more promising ones. Physics is not simply a collection of facts

and principles; it is also the process by which we arrive at general principles that

describe how the physical universe behaves.

No theory is ever regarded as the final or ultimate truth. The possibility always

exists that new observations will require that a theory be revised or discarded. It is

in the nature of physical theory that we can disprove a theory by finding behavior

that is inconsistent with it, but we can never prove that a theory is always correct.

Getting back to Galileo, suppose we drop a feather and a cannonball. They

certainly do not fall at the same rate. This does not mean that Galileo was wrong;

it means that his theory was incomplete. If we drop the feather and the cannon-

ball in a vacuum to eliminate the effects of the air, then they do fall at the same

rate. Galileo’s theory has a range of validity: It applies only to objects for which

the force exerted by the air (due to air resistance and buoyancy) is much less than

the weight. Objects like feathers or parachutes are clearly outside this range.

Often a new development in physics extends a principle’s range of validity.

Galileo’s analysis of falling bodies was greatly extended half a century later by

Newton’s laws of motion and law of gravitation.

2 Solving Physics Problems

At some point in their studies, almost all physics students find themselves think-

ing, “I understand the concepts, but I just can’t solve the problems.” But in

physics, truly understanding a concept means being able to apply it to a variety of

problems. Learning how to solve problems is absolutely essential; you don’t

know physics unless you can do physics.

How do you learn to solve physics problems? You will find Problem-Solving
Strategies that offer techniques for setting up and solving problems efficiently

and accurately. Following each Problem-Solving Strategy are one or more

worked Examples that show these techniques in action. (The Problem-
Solving Strategies will also steer you away from some incorrect techniques 

that you may be tempted to use.) You’ll also find additional examples that 

aren’t associated with a particular Problem-Solving Strategy. In addition, 

Units, Physical Quantities, and Vectors

(a)

(b)

1 Two research laboratories. (a) According
to legend, Galileo investigated falling bod-
ies by dropping them from the Leaning
Tower in Pisa, Italy, and he studied pendu-
lum motion by observing the swinging of
the chandelier in the adjacent cathedral. 
(b) The Large Hadron Collider (LHC) in
Geneva, Switzerland, the world’s largest
particle accelerator, is used to explore the
smallest and most fundamental con-
stituents of matter. This photo shows a 
portion of one of the LHC’s detectors 
(note the worker on the yellow platform).
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in this text you’ll find a Bridging Problem that uses more than one of the key

ideas from the chapter. Study these strategies and problems carefully, and work

through each example for yourself on a piece of paper.

Different techniques are useful for solving different kinds of physics prob-

lems, which is why this text offers dozens of Problem-Solving Strategies. No

matter what kind of problem you’re dealing with, however, there are certain key

steps that you’ll always follow. (These same steps are equally useful for problems

in math, engineering, chemistry, and many other fields.) In this text we’ve organ-

ized these steps into four stages of solving a problem.

All of the Problem-Solving Strategies and Examples will follow these four

steps. (In some cases we will combine the first two or three steps.) We encourage

you to follow these same steps when you solve problems yourself. You may find

it useful to remember the acronym I SEE—short for Identify, Set up, Execute,
and Evaluate.

Problem-Solving Strategy 1 Solving Physics Problems

IDENTIFY the relevant concepts: Use the physical conditions

stated in the problem to help you decide which physics concepts

are relevant. Identify the target variables of the problem—that is,

the quantities whose values you’re trying to find, such as the speed

at which a projectile hits the ground, the intensity of a sound made

by a siren, or the size of an image made by a lens. Identify the

known quantities, as stated or implied in the problem. This step is

essential whether the problem asks for an algebraic expression or a

numerical answer.

SET UP the problem: Given the concepts you have identified and

the known and target quantities, choose the equations that you’ll

use to solve the problem and decide how you’ll use them. Make

sure that the variables you have identified correlate exactly with

those in the equations. If appropriate, draw a sketch of the situation

described in the problem. (Graph paper, ruler, protractor, and com-

pass will help you make clear, useful sketches.) As best you can,

estimate what your results will be and, as appropriate, predict what

the physical behavior of a system will be. The worked examples in

this text include tips on how to make these kinds of estimates and

predictions. If this seems challenging, don’t worry—you’ll get

better with practice!

EXECUTE the solution: This is where you “do the math.” Study the

worked examples to see what’s involved in this step.

EVALUATE your answer: Compare your answer with your esti-

mates, and reconsider things if there’s a discrepancy. If your

answer includes an algebraic expression, assure yourself that it

represents what would happen if the variables in it were taken to

extremes. For future reference, make note of any answer that rep-

resents a quantity of particular significance. Ask yourself how you

might answer a more general or more difficult version of the prob-

lem you have just solved.

Idealized Models

In everyday conversation we use the word “model” to mean either a small-scale

replica, such as a model railroad, or a person who displays articles of clothing (or

the absence thereof). In physics a model is a simplified version of a physical sys-

tem that would be too complicated to analyze in full detail.

For example, suppose we want to analyze the motion of a thrown baseball

(Fig. 2a). How complicated is this problem? The ball is not a perfect sphere (it

has raised seams), and it spins as it moves through the air. Wind and air resistance

influence its motion, the ball’s weight varies a little as its distance from the center

of the earth changes, and so on. If we try to include all these things, the analysis

gets hopelessly complicated. Instead, we invent a simplified version of the prob-

lem. We neglect the size and shape of the ball by representing it as a point object,

or particle. We neglect air resistance by making the ball move in a vacuum, and

we make the weight constant. Now we have a problem that is simple enough to

deal with (Fig. 2b). 

We have to overlook quite a few minor effects to make an idealized model, but

we must be careful not to neglect too much. If we ignore the effects of gravity

completely, then our model predicts that when we throw the ball up, it will go in

a straight line and disappear into space. A useful model is one that simplifies a

problem enough to make it manageable, yet keeps its essential features.

Direction of
motion

Direction of
motion

Baseball is treated as a point object (particle).

No air resistance.

Baseball spins and has a complex shape.

Air resistance and
wind exert forces
on the ball.

Gravitational force on ball
depends on altitude.

Gravitational force
on ball is constant.

(a) A real baseball in flight

(b) An idealized model of the baseball

2 To simplify the analysis of (a) a baseball
in flight, we use (b) an idealized model.

Units, Physical Quantities, and Vectors
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The validity of the predictions we make using a model is limited by the valid-

ity of the model. For example, Galileo’s prediction about falling bodies (see Sec-

tion 1) corresponds to an idealized model that does not include the effects of air

resistance. This model works fairly well for a dropped cannonball, but not so well

for a feather.

Idealized models play a crucial role in this text. Watch for them in discussions

of physical theories and their applications to specific problems.

3 Standards and Units

As we learned in Section 1, physics is an experimental science. Experiments

require measurements, and we generally use numbers to describe the results of

measurements. Any number that is used to describe a physical phenomenon

quantitatively is called a physical quantity. For example, two physical quantities

that describe you are your weight and your height. Some physical quantities are

so fundamental that we can define them only by describing how to measure them.

Such a definition is called an operational definition. Two examples are measur-

ing a distance by using a ruler and measuring a time interval by using a stop-

watch. In other cases we define a physical quantity by describing how to calculate

it from other quantities that we can measure. Thus we might define the average

speed of a moving object as the distance traveled (measured with a ruler) divided

by the time of travel (measured with a stopwatch).

When we measure a quantity, we always compare it with some reference stan-

dard. When we say that a Ferrari 458 Italia is 4.53 meters long, we mean that it is

4.53 times as long as a meter stick, which we define to be 1 meter long. Such a

standard defines a unit of the quantity. The meter is a unit of distance, and the

second is a unit of time. When we use a number to describe a physical quantity,

we must always specify the unit that we are using; to describe a distance as

simply “4.53” wouldn’t mean anything.

To make accurate, reliable measurements, we need units of measurement that

do not change and that can be duplicated by observers in various locations. The

system of units used by scientists and engineers around the world is commonly

called “the metric system,” but since 1960 it has been known officially as the

International System, or SI (the abbreviation for its French name, Système
International). 

Time

From 1889 until 1967, the unit of time was defined as a certain fraction of the

mean solar day, the average time between successive arrivals of the sun at its high-

est point in the sky. The present standard, adopted in 1967, is much more precise.

It is based on an atomic clock, which uses the energy difference between the two

lowest energy states of the cesium atom. When bombarded by microwaves of pre-

cisely the proper frequency, cesium atoms undergo a transition from one of these

states to the other. One second (abbreviated s) is defined as the time required for

9,192,631,770 cycles of this microwave radiation (Fig. 3a).

Length

In 1960 an atomic standard for the meter was also established, using the wave-

length of the orange-red light emitted by atoms of krypton in a glow dis-

charge tube. Using this length standard, the speed of light in vacuum was

measured to be 299,792,458 m s. In November 1983, the length standard was

changed again so that the speed of light in vacuum was defined to be precisely

>

(86Kr)
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Light
source

Cesium-133
atom

Cesium-133
atom

Microwave radiation with a frequency of
exactly 9,192,631,770 cycles per second ...

... causes the outermost electron of a
cesium-133 atom to reverse its spin direction.

An atomic clock uses this phenomenon to tune
microwaves to this exact frequency. It then
counts 1 second for each 9,192,631,770 cycles.

Light travels exactly
299,792,458 m in 1 s.

(a) Measuring the second

(b) Measuring the meter

0:00 s 0:01 s

Outermost
electron

3 The measurements used to determine
(a) the duration of a second and (b) the
length of a meter. These measurements are
useful for setting standards because they
give the same results no matter where they
are made.
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299,792,458 m s. Hence the new definition of the meter (abbreviated m) is the

distance that light travels in vacuum in 1 299,792,458 second (Fig. 3b). This pro-

vides a much more precise standard of length than the one based on a wavelength

of light.

Mass

The standard of mass, the kilogram (abbreviated kg), is defined to be the mass of

a particular cylinder of platinum–iridium alloy kept at the International Bureau

of Weights and Measures at Sèvres, near Paris (Fig. 4). An atomic standard of

mass would be more fundamental, but at present we cannot measure masses on

an atomic scale with as much accuracy as on a macroscopic scale. The gram
(which is not a fundamental unit) is 0.001 kilogram.

Unit Prefixes

Once we have defined the fundamental units, it is easy to introduce larger and

smaller units for the same physical quantities. In the metric system these other

units are related to the fundamental units (or, in the case of mass, to the gram) by

multiples of 10 or Thus one kilometer is 1000 meters, and one cen-

timeter is meter. We usually express multiples of 10 or in exponential

notation: and so on. With this notation, 

and 

The names of the additional units are derived by adding a prefix to the name

of the fundamental unit. For example, the prefix “kilo-,” abbreviated k, always

means a unit larger by a factor of 1000; thus

Table 1 gives some examples of the use of multiples of 10 and their prefixes with

the units of length, mass, and time. Figure 5 shows how these prefixes are used to

describe both large and small distances.

The British System

Finally, we mention the British system of units. These units are used only in the

United States and a few other countries, and in most of these they are being replaced

by SI units. British units are now officially defined in terms of SI units, as follows:

 Force:  1 pound = 4.448221615260 newtons (exactly)

 Length:  1 inch = 2.54 cm (exactly)

 1 kilowatt  = 1 kW = 103 watts  = 103 W

 1 kilogram  = 1 kg  = 103 grams  = 103 g

 1 kilometer = 1 km  = 103 meters = 103 m

1 cm = 10-2 m.

1 km = 103 m
1

1000 = 10-3,1000 = 103,

1
10

1
10011 cm2

11 km21
10 .

>
>

4 The international standard kilogram is
the metal object carefully enclosed within
these nested glass containers.

Table 1 Some Units of Length, Mass, and Time

Length Mass Time

(a few times the size of the largest atom)

(size of some bacteria and living cells)

(diameter of the point of a ballpoint pen)

(diameter of your little finger)

(a 10-minute walk)

 1 kilometer  = 1 km  = 103 m 

 1 centimeter  = 1 cm  = 10-2 m 

 1 millimeter  = 1 mm = 10-3 m 

 1 micrometer = 1 mm = 10-6 m 

 1 nanometer  = 1 nm  = 10-9 m 

(mass of a very small dust particle)

(mass of a grain of salt)

(mass of a paper clip)

 1 gram  = 1 g  = 10-3 kg 

 1 milligram  = 1 mg  = 10-3 g = 10-6 kg 

 1 microgram  = 1 mg  = 10-6 g = 10-9 kg 

(time for light to travel 0.3 m)

(time for space station to move 8 mm)

(time for sound to travel 0.35 m)

 1 millisecond  = 1 ms = 10-3 s 

 1 microsecond = 1 ms  = 10-6 s 

 1 nanosecond  = 1 ns  = 10-9 s 

Units, Physical Quantities, and Vectors
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The newton, abbreviated N, is the SI unit of force. The British unit of time is the

second, defined the same way as in SI. In physics, British units are used only in

mechanics and thermodynamics; there is no British system of electrical units.

In this text we use SI units for all examples and problems, but we occasionally

give approximate equivalents in British units. As you do problems using SI

units, you may also wish to convert to the approximate British equivalents if they

are more familiar to you (Fig. 6). But you should try to think in SI units as much

as you can.

4 Unit Consistency and Conversions

We use equations to express relationships among physical quantities, represented

by algebraic symbols. Each algebraic symbol always denotes both a number and

a unit. For example, d might represent a distance of 10 m, t a time of 5 s, and a

speed of 

An equation must always be dimensionally consistent. You can’t add apples

and automobiles; two terms may be added or equated only if they have the same

units. For example, if a body moving with constant speed travels a distance d in

a time t, these quantities are related by the equation

If d is measured in meters, then the product must also be expressed in meters.

Using the above numbers as an example, we may write

Because the unit on the right side of the equation cancels the unit s, the prod-

uct has units of meters, as it must. In calculations, units are treated just like alge-

braic symbols with respect to multiplication and division.

CAUTION Always use units in calculations When a problem requires calculations using

numbers with units, always write the numbers with the correct units and carry the units

through the calculation as in the example above. This provides a very useful check. If at

some stage in a calculation you find that an equation or an expression has inconsistent

units, you know you have made an error somewhere. In this text we will always carry units

through all calculations, and we strongly urge you to follow this practice when you solve

problems. ❙

1>s

10 m = a2 
m

s
b15 s2

vt

d = vt

v

2 m>s.

v

Units, Physical Quantities, and Vectors

(g)10214 m
Radius of an
atomic nucleus

(f)10210 m
Radius of an
atom

(e)1025 m
Diameter of a
red blood cell

(d)1 m
Human
dimensions

(c)107 m
Diameter of
the earth

(b)1011 m
Distance to
the sun

(a)1026 m
Limit of the
observable
universe

5 Some typical lengths in the universe. (f) is a scanning tunneling microscope image of atoms on a crystal surface; (g) is an artist’s
impression.

6 Many everyday items make use of both
SI and British units. An example is this
speedometer from a U.S.-built automobile,
which shows the speed in both kilometers
per hour (inner scale) and miles per hour
(outer scale).
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Problem-Solving Strategy 2 Solving Physics Problems

IDENTIFY the relevant concepts: In most cases, it’s best to use the
fundamental SI units (lengths in meters, masses in kilograms, and
times in seconds) in every problem. If you need the answer to be in
a different set of units (such as kilometers, grams, or hours), wait
until the end of the problem to make the conversion.

SET UP the problem and EXECUTE the solution: Units are multi-
plied and divided just like ordinary algebraic symbols. This gives
us an easy way to convert a quantity from one set of units to
another: Express the same physical quantity in two different units
and form an equality.

For example, when we say that we don’t mean
that the number 1 is equal to the number 60; rather, we mean that 
1 min represents the same physical time interval as 60 s. For this
reason, the ratio equals 1, as does its reciprocal

We may multiply a quantity by either of these160 s2>11 min2.
11 min2>160 s2

1 min = 60 s,

factors (which we call unit multipliers) without changing that
quantity’s physical meaning. For example, to find the number of
seconds in 3 min, we write

EVALUATE your answer: If you do your unit conversions correctly,
unwanted units will cancel, as in the example above. If, instead, you
had multiplied 3 min by your result would have

been the nonsensical . To be sure you convert units prop-
erly, you must write down the units at all stages of the calculation.

Finally, check whether your answer is reasonable. For example,
the result is reasonable because the second is a
smaller unit than the minute, so there are more seconds than min-
utes in the same time interval.

3 min = 180 s

1
20 min2>s

11 min2>160 s2,

3 min = 13 min2a
60 s

1 min
b = 180 s

Example 1 Converting speed units

The world land speed record is 763.0 mi h, set on October 15,
1997, by Andy Green in the jet-engine car Thrust SSC. Express
this speed in meters per second.

SOLUTION

IDENTIFY, SET UP, and EXECUTE: We need to convert the units of a
speed from mi h to We must therefore find unit multipliers
that relate (i) miles to meters and (ii) hours to seconds. We can
find the equalities and

We set up the conversion as follows, which ensures
that all the desired cancellations by division take place:

 = 341.0 m>s

 763.0 mi>h = a763.0 
mi

h
b a

1.609 km
1 mi

b a
1000 m

1 km
b a

1 h

3600 s
b

1 h = 3600 s.
1 km = 1000 m,1 mi = 1.609 km,

m>s.>

> EVALUATE: Green’s was the first supersonic land speed record (the
speed of sound in air is about 340 m s). This example shows a use-
ful rule of thumb: A speed expressed in m s is a bit less than half
the value expressed in mi h, and a bit less than one-third the value
expressed in km h. For example, a normal freeway speed is about

and a typical walking speed is
about 1.4 m>s = 3.1 mi>h = 5.0 km>h.
30 m>s = 67 mi>h = 108 km>h,

>
>

>
>

Example 2 Converting volume units

The world’s largest cut diamond is the First Star of Africa
(mounted in the British Royal Sceptre and kept in the Tower of
London). Its volume is 1.84 cubic inches. What is its volume in
cubic centimeters? In cubic meters?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Here we are to convert the units
of a volume from cubic inches to both cubic centimeters

and cubic meters Recall that from
which we obtain . We then have

 = 11.84212.5423 
in.3 cm3

in.3
= 30.2 cm3

 1.84 in.3 = 11.84 in.32a
2.54 cm

1 in.
b

3

1 in.3 = 12.54 cm23
1 in. = 2.540 cm,1m32.1cm32

1in.32

Recall that so

EVALUATE: Following the pattern of these conversions, you can
show that and that . These
approximate unit conversions may be useful for future reference.

1 m3
L 60,000 in.31 in.3 L 16 cm3

 = 3.02 * 10-5 m3

 = 130.22a
1

100
b

3

 
cm3 m3

cm3
= 30.2 * 10-6 m3

 30.2 cm3
= 130.2 cm32a

1 m

100 cm
b

3

1 m = 100 cm,

Units, Physical Quantities, and Vectors
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5 Uncertainty and Significant Figures

Measurements always have uncertainties. If you measure the thickness of the

cover of a hardbound version of a book using an ordinary ruler, your measure-

ment is reliable only to the nearest millimeter, and your result will be 3 mm. It

would be wrong to state this result as 3.00 mm; given the limitations of the meas-

uring device, you can’t tell whether the actual thickness is 3.00 mm, 2.85 mm, or

3.11 mm. But if you use a micrometer caliper, a device that measures distances

reliably to the nearest 0.01 mm, the result will be 2.91 mm. The distinction

between these two measurements is in their uncertainty. The measurement using

the micrometer caliper has a smaller uncertainty; it’s a more accurate measure-

ment. The uncertainty is also called the error because it indicates the maximum

difference there is likely to be between the measured value and the true value.

The uncertainty or error of a measured value depends on the measurement tech-

nique used.

We often indicate the accuracy of a measured value—that is, how close it is

likely to be to the true value—by writing the number, the symbol and a sec-

ond number indicating the uncertainty of the measurement. If the diameter of a

steel rod is given as this means that the true value is unlikely

to be less than 56.45 mm or greater than 56.49 mm. In a commonly used short-

hand notation, the number means The numbers in

parentheses show the uncertainty in the final digits of the main number.

We can also express accuracy in terms of the maximum likely fractional
error or percent error (also called fractional uncertainty and percent uncer-
tainty). A resistor labeled probably has a true resistance that

differs from 47 ohms by no more than 10% of 47 ohms—that is, by about 5 ohms.

The resistance is probably between 42 and 52 ohms. For the diameter of the steel

rod given above, the fractional error is or about 0.0004;

the percent error is or about 0.04%. Even small percent errors

can sometimes be very significant (Fig. 7).

In many cases the uncertainty of a number is not stated explicitly. Instead, the

uncertainty is indicated by the number of meaningful digits, or significant figures,
in the measured value. We gave the thickness of the cover of a book as 2.91 mm,

which has three significant figures. By this we mean that the first two digits are

known to be correct, while the third digit is uncertain. The last digit is in the hun-

dredths place, so the uncertainty is about 0.01 mm. Two values with the same
number of significant figures may have different uncertainties; a distance given as

137 km also has three significant figures, but the uncertainty is about 1 km.

When you use numbers that have uncertainties to compute other numbers, the

computed numbers are also uncertain. When numbers are multiplied or divided,

the number of significant figures in the result can be no greater than in the factor

with the fewest significant figures. For example, 

When we add and subtract numbers, it’s the location of the decimal point that mat-

ters, not the number of significant figures. For example, 

Although 123.62 has an uncertainty of about 0.01, 8.9 has an uncertainty of about

0.1. So their sum has an uncertainty of about 0.1 and should be written as 132.5,

not 132.52. Table 2 summarizes these rules for significant figures.

As an application of these ideas, suppose you want to verify the value of 

the ratio of the circumference of a circle to its diameter. The true value of this

ratio to ten digits is 3.141592654. To test this, you draw a large circle and meas-

ure its circumference and diameter to the nearest millimeter, obtaining the values

424 mm and 135 mm (Fig. 8). You punch these into your calculator and obtain

the quotient . This may seem to disagree

with the true value of but keep in mind that each of your measurements has

three significant figures, so your measured value of can have only three signifi-

cant figures. It should be stated simply as 3.14. Within the limit of three signifi-

cant figures, your value does agree with the true value.

p

p,

1424 mm2>1135 mm2 = 3.140740741

p,

123.62 + 8.9 = 132.5.

3.1416 * 2.34 * 0.58 = 4.3.

10.000421100%2,
10.02 mm2>156.47 mm2,

“47 ohms Ϯ 10%”

1.6454 Ϯ 0.0021.1.64541212

56.47 Ϯ 0.02 mm,

Ϯ ,

Units, Physical Quantities, and Vectors

7 This spectacular mishap was the result of
a very small percent error—traveling a few
meters too far at the end of a journey of hun-
dreds of thousands of meters.

Table 2 Using Significant 
Figures

Multiplication or division:
Result may have no more significant figures

than the starting number with the fewest 

significant figures:

Addition or subtraction:
Number of significant figures is determined by

the starting number with the largest uncertainty

(i.e., fewest digits to the right of the decimal

point):

27.153 + 138.2 - 11.74 = 153.6

1.32578 * 107
* 4.11 * 10-3

= 5.45 * 104

0.745 * 2.2

3.885
= 0.42

The measured values have only three significant
figures, so their calculated  ratio (p) also has
only three significant figures.

424 mm

135 mm

8 Determining the value of from the
circumference and diameter of a circle.
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In the examples and problems in this text we usually give numerical values
with three significant figures, so your answers should usually have no more than
three significant figures. (Many numbers in the real world have even less accu-
racy. An automobile speedometer, for example, usually gives only two significant
figures.) Even if you do the arithmetic with a calculator that displays ten digits, it
would be wrong to give a ten-digit answer because it misrepresents the accuracy
of the results. Always round your final answer to keep only the correct number of
significant figures or, in doubtful cases, one more at most. In Example 1 it would
have been wrong to state the answer as Note that when you
reduce such an answer to the appropriate number of significant figures, you must
round, not truncate. Your calculator will tell you that the ratio of 525 m to 311 m
is 1.688102894; to three significant figures, this is 1.69, not 1.68.

When we calculate with very large or very small numbers, we can show sig-
nificant figures much more easily by using scientific notation, sometimes called
powers-of-10 notation. The distance from the earth to the moon is about
384,000,000 m, but writing the number in this form doesn’t indicate the number
of significant figures. Instead, we move the decimal point eight places to the left
(corresponding to dividing by 108) and multiply by that is,

In this form, it is clear that we have three significant figures. The number
also has three significant figures, even though two of them are

zeros. Note that in scientific notation the usual practice is to express the quantity
as a number between 1 and 10 multiplied by the appropriate power of 10.

When an integer or a fraction occurs in a general equation, we treat that
number as having no uncertainty at all. For example, in the equation

the coefficient 2 is exactly 2. We can consider this
coefficient as having an infinite number of significant figures 
The same is true of the exponent 2 in and 

Finally, let’s note that precision is not the same as accuracy. A cheap digital
watch that gives the time as 10:35:17 A.M. is very precise (the time is given to the
second), but if the watch runs several minutes slow, then this value isn’t very
accurate. On the other hand, a grandfather clock might be very accurate (that is,
display the correct time), but if the clock has no second hand, it isn’t very precise.
A high-quality measurement is both precise and accurate.

v0x
2.vx

2
12.000000 Á 2.

vx
2

= v0x
2

+ 2ax 1x - x02,

4.00 * 10-7

384,000,000 m = 3.84 * 108 m

108;

341.01861 m>s.

Example 3 Significant figures in multiplication

The rest energy E of an object with rest mass m is given by 
Einstein’s famous equation , where c is the speed of light
in vacuum. Find E for an electron for which (to three significant
figures) . The SI unit for E is the joule (J);

SOLUTION

IDENTIFY and SET UP: Our target variable is the energy E. We are
given the value of the mass m; from Section 3 the speed of light is

EXECUTE: Substituting the values of m and c into Einstein’s equa-
tion, we find

 = 8.187659678 * 10-14 kg # m2>s2

 = 181.8765967821103-31+12*8242 kg # m2>s2

 = 19.11212.9979245822110-312110822 kg # m2>s2

 E = 19.11 * 10-31 kg212.99792458 * 108 m>s22

c = 2.99792458 * 108 m>s.

1 J = 1 kg # m2>s2.
m = 9.11 * 10-31 kg

E = mc2
Since the value of m was given to only three significant figures, we
must round this to

EVALUATE: While the rest energy contained in an electron may
seem ridiculously small, on the atomic scale it is tremendous.
Compare our answer to the energy gained or lost by a
single atom during a typical chemical reaction. The rest energy of
an electron is about 1,000,000 times larger! 

10-19 J,

E = 8.19 * 10-14 kg # m2>s2
= 8.19 * 10-14 J

Units, Physical Quantities, and Vectors
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6 Estimates and Orders of Magnitude
We have stressed the importance of knowing the accuracy of numbers that repre-
sent physical quantities. But even a very crude estimate of a quantity often gives
us useful information. Sometimes we know how to calculate a certain quantity,
but we have to guess at the data we need for the calculation. Or the calculation
might be too complicated to carry out exactly, so we make some rough approxi-
mations. In either case our result is also a guess, but such a guess can be useful
even if it is uncertain by a factor of two, ten, or more. Such calculations are often
called order-of-magnitude estimates. The great Italian-American nuclear physi-
cist Enrico Fermi (1901–1954) called them “back-of-the-envelope calculations.”

Exercises 16 through 25 at the end of this chapter are of the estimating, or
order-of-magnitude, variety. Most require guesswork for the needed input data.
Don’t try to look up a lot of data; make the best guesses you can. Even when they
are off by a factor of ten, the results can be useful and interesting.

Units, Physical Quantities, and Vectors

Test Your Understanding of Section 5 The density of a material is
equal to its mass divided by its volume. What is the density of a rock of
mass 1.80 kg and volume (i) (ii) 
(iii) (iv) (v) any of these—all of these answers
are mathematically equivalent. ❙

3.000 * 103 kg >m3;3.00 * 103 kg >m3;
103 kg >m3;3.0 *3 * 103 kg>m3;6.0 * 10-4 m3?

(in kg>m3)

Example 4 An order-of-magnitude estimate

You are writing an adventure novel in which the hero escapes
across the border with a billion dollars’ worth of gold in his suit-
case. Could anyone carry that much gold? Would it fit in a suit-
case?

SOLUTION

IDENTIFY, SET UP, and EXECUTE: Gold sells for around $400 an
ounce. (The price has varied between $200 and $1000 over the
past decade or so.) An ounce is about 30 grams; that’s worth
remembering. So ten dollars’ worth of gold has a mass of 
ounce, or around one gram. A billion dollars’ worth of gold 11092

1
40

is a hundred million grams, or a hundred thousand 
kilograms. This corresponds to a weight in British units of
around 200,000 lb, or 100 tons. No human hero could lift that
weight!

Roughly what is the volume of this gold? The density of gold is
much greater than that of water , or ; if its
density is 10 times that of water, this much gold will have a vol-
ume of , many times the volume of a suitcase.

EVALUATE: Clearly your novel needs rewriting. Try the calculation
again with a suitcase full of five-carat (1-gram) diamonds, each
worth $100,000. Would this work?

10 m3

1000 kg >m311 g>cm32

1105211082

Test Your Understanding of Section 6 Can you estimate the total number of
teeth in all the mouths of everyone (students, staff, and faculty) on your campus? (Hint:
How many teeth are in your mouth? Count them!) ❙

7 Vectors and Vector Addition
Some physical quantities, such as time, temperature, mass, and density, can be
described completely by a single number with a unit. But many other important
quantities in physics have a direction associated with them and cannot be
described by a single number. A simple example is describing the motion of an
airplane: We must say not only how fast the plane is moving but also in what
direction. The speed of the airplane combined with its direction of motion
together constitute a quantity called velocity. Another example is force, which in
physics means a push or pull exerted on a body. Giving a complete description of
a force means describing both how hard the force pushes or pulls on the body and
the direction of the push or pull.

Application Scalar Temperature,
Vector Wind
This weather station measures temperature, a
scalar quantity that can be positive or negative
(say, ) but has no direction. It
also measures wind velocity, which is a vector
quantity with both magnitude and direction (for
example, 15 km/h from the west).

+20°C or -5°C

PhET: Estimation

Scott Bauer - USDAAgricultural Research Service
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When a physical quantity is described by a single number, we call it a scalar
quantity. In contrast, a vector quantity has both a magnitude (the “how much”

or “how big” part) and a direction in space. Calculations that combine scalar quan-

tities use the operations of ordinary arithmetic. For example, 

or However, combining vectors requires a different set of operations.

To understand more about vectors and how they combine, we start with the

simplest vector quantity, displacement. Displacement is simply a change in the

position of an object. Displacement is a vector quantity because we must state not

only how far the object moves but also in what direction. Walking 3 km north from

your front door doesn’t get you to the same place as walking 3 km southeast; these

two displacements have the same magnitude but different directions.

We usually represent a vector quantity such as displacement by a single letter,

such as in Fig. 9a. In this text we always print vector symbols in boldface italic
type with an arrow above them. We do this to remind you that vector quantities

have different properties from scalar quantities; the arrow is a reminder that vec-

tors have direction. When you handwrite a symbol for a vector, always write it

with an arrow on top. If you don’t distinguish between scalar and vector quanti-

ties in your notation, you probably won’t make the distinction in your thinking

either, and hopeless confusion will result.

We always draw a vector as a line with an arrowhead at its tip. The length of

the line shows the vector’s magnitude, and the direction of the line shows the vec-

tor’s direction. Displacement is always a straight-line segment directed from the

starting point to the ending point, even though the object’s actual path may be

curved (Fig. 9b). Note that displacement is not related directly to the total distance
traveled. If the object were to continue on past and then return to the dis-

placement for the entire trip would be zero (Fig. 9c).

If two vectors have the same direction, they are parallel. If they have the same

magnitude and the same direction, they are equal, no matter where they are located

in space. The vector from point to point in Fig. 10 has the same length and

direction as the vector from to These two displacements are equal, even

though they start at different points. We write this as in Fig. 10; the bold-

face equals sign emphasizes that equality of two vector quantities is not the same

relationship as equality of two scalar quantities. Two vector quantities are equal

only when they have the same magnitude and the same direction.

The vector in Fig. 10, however, is not equal to because its direction is

opposite to that of We define the negative of a vector as a vector having the

same magnitude as the original vector but the opposite direction. The negative of

vector quantity is denoted as and we use a boldface minus sign to empha-

size the vector nature of the quantities. If is 87 m south, then is 87 m

north. Thus we can write the relationship between and in Fig. 10 as

or When two vectors and have opposite directions,

whether their magnitudes are the same or not, we say that they are antiparallel.
We usually represent the magnitude of a vector quantity (in the case of a dis-

placement vector, its length) by the same letter used for the vector, but in light
italic type with no arrow on top. An alternative notation is the vector symbol with

vertical bars on both sides:

(1)

The magnitude of a vector quantity is a scalar quantity (a number) and is always
positive. Note that a vector can never be equal to a scalar because they are 

different kinds of quantities. The expression is just as wrong as

!

When drawing diagrams with vectors, it’s best to use a scale similar to those

used for maps. For example, a displacement of 5 km might be represented in a

diagram by a vector 1 cm long, and a displacement of 10 km by a vector 2 cm

long. In a diagram for velocity vectors, a vector that is 1 cm long might represent

“2 oranges = 3 apples”

“A
S

= 6 m”

1Magnitude of A
S
2 = A = ƒ  A

S
ƒ

B
S

A
S

A
S

.B
S

� �B
S

A
S

� �
B
S

A
S

�A
S

A
S

�A
S

,A
S

A
S

.

A
S

B
S

� A
S

A
S
¿

P2 .P1A
S

P4P3A
S
¿

P1 ,P2

A
S

4 * 2 s = 8 s.

6 kg + 3 kg = 9 kg,

Ending position: P2

Displacement A

Starting position: P1

P2

P1

P1

S

A

Path taken

S

Handwritten notation:

Displacement depends only on the starting
and ending positions—not on the path taken.

We represent a displacement by an arrow
pointing in the direction of displacement.

Total displacement for a round trip
is 0, regardless of the distance traveled.

(a)

(b)

(c)

9 Displacement as a vector quantity. A
displacement is always a straight-line seg-
ment directed from the starting point to the
ending point, even if the path is curved.

P2 P4 P5

P1 P3 P6

AЈ 5 B 5 2AA
S

A
S S S

Displacement B has
the same magnitude
as A but opposite
direction; B is the
negative of A.

S

S

S

S
Displacements A and AЈ
are equal because they
have the same length
and direction.

S S

S

10 The meaning of vectors that have the
same magnitude and the same or opposite
direction.
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a velocity of magnitude 5 m s. A velocity of 20 m s would then be represented

by a vector 4 cm long.

Vector Addition and Subtraction

Suppose a particle undergoes a displacement followed by a second displace-

ment . The final result is the same as if the particle had started at the same initial

point and undergone a single displacement (Fig. 11a). We call displacement 

the vector sum, or resultant, of displacements and We express this rela-

tionship symbolically as

(2)

The boldface plus sign emphasizes that adding two vector quantities requires a

geometrical process and is not the same operation as adding two scalar quantities

such as In vector addition we usually place the tail of the second
vector at the head, or tip, of the first vector (Fig. 11a).

If we make the displacements and in reverse order, with first and sec-

ond, the result is the same (Fig. 11b). Thus

(3)

This shows that the order of terms in a vector sum doesn’t matter. In other words,

vector addition obeys the commutative law.

Figure 11c shows another way to represent the vector sum: If vectors and 

are both drawn with their tails at the same point, vector is the diagonal of a par-

allelogram constructed with and as two adjacent sides.

CAUTION Magnitudes in vector addition It’s a common error to conclude that if

then the magnitude C should equal the magnitude A plus the magnitude B. In

general, this conclusion is wrong; for the vectors shown in Fig. 11, you can see that

The magnitude of depends on the magnitudes of and and on the 

angle between and . Only in the special case in which and are parallel is the 

magnitude of equal to the sum of the magnitudes of and (Fig. 12a).

When the vectors are antiparallel (Fig. 12b), the magnitude of equals the difference of

the magnitudes of and Be careful about distinguishing between scalar and vector

quantities, and you’ll avoid making errors about the magnitude of a vector sum. ❙

When we need to add more than two vectors, we may first find the vector sum

of any two, add this vectorially to the third, and so on. Figure 13a shows three

vectors and In Fig. 13b we first add and to give a vector 

sum we then add vectors and by the same process to obtain the vector 

sum 
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(a) We can add two vectors by placing them
head to tail.

A
S

B
S

C 5 A 1 B
S S S

(b) Adding them in reverse order gives the
same result.

A
S

B
S

C 5 B 1 A
S S S

(c) We can also add them by constructing a
parallelogram.

A
S

B
S

C 5 A 1 B
S S S

11 Three ways to add two vectors. 
As shown in (b), the order in vector addi-
tion doesn’t matter; vector addition is
commutative.

(a) The sum of two parallel vectors

(b) The sum of two antiparallel vectors

A
S

B
S

C � A � B
S S S

A
S

B
S

C � A � B
S S S

12 (a) Only when two vectors and 
are parallel does the magnitude of their
sum equal the sum of their magnitudes:

(b) When and are
antiparallel, the magnitude of their sum
equals the difference of their magnitudes:
C = ƒA - B ƒ .
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A
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C = A + B.

B
S

A
S

(a) To find the sum of
these three vectors ...

A
S

B
S

C
S

(b) we could add A and B
to get D and then add
C to D to get the final
sum (resultant) R, ...
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(c) or we could add B and C
to get E and then add
A to E to get R, ...
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(d) or we could add A, B,
and C to get R directly, ...

S S
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A
S

B
S

R
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C
S

(e) or we could add A, B,
and C in any other order
and still get R.
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13 Several constructions for finding the vector sum A
S

� B
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Alternatively, we can first add and to obtain vector (Fig. 13c), and then add
and to obtain 

We don’t even need to draw vectors and all we need to do is draw and
in succession, with the tail of each at the head of the one preceding it. The 

sum vector extends from the tail of the first vector to the head of the last vector
(Fig. 13d). The order makes no difference; Fig. 13e shows a different order, and we
invite you to try others. We see that vector addition obeys the associative law.

We can subtract vectors as well as add them. To see how, recall that vector
has the same magnitude as but the opposite direction. We define the dif-

ference of two vectors and to be the vector sum of and 

(4)

Figure 14 shows an example of vector subtraction.
A vector quantity such as a displacement can be multiplied by a scalar quan-

tity (an ordinary number). The displacement is a displacement (vector quan-
tity) in the same direction as the vector but twice as long; this is the same as
adding to itself (Fig. 15a). In general, when a vector is multiplied by a scalar
c, the result has magnitude (the absolute value of c multiplied by 
the magnitude of the vector ). If c is positive, is in the same direction as 
if c is negative, is in the direction opposite to Thus is parallel to 
while is antiparallel to (Fig. 15b).

A scalar used to multiply a vector may also be a physical quantity. For exam-
ple, you may be familiar with the relationship the net force (a vector
quantity) that acts on a body is equal to the product of the body’s mass m (a scalar
quantity) and its acceleration (a vector quantity). The direction of is the same
as that of because m is positive, and the magnitude of is equal to the mass m
(which is positive) multiplied by the magnitude of The unit of force is the unit
of mass multiplied by the unit of acceleration.
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With  A and 2B head to tail,
A 2 B is the vector from the
tail of A to the head of  2B .

With  A and  B head to head,
A 2 B is the vector from the
tail of A to the tail of B .

 2 B
S

A
S

S S
Subtracting B from A ... ... is equivalent to adding 2B to A. 
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14 To construct the vector difference you can either place the tail of at the head of or place the two vectors and 
head to head.
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A
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A
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2A
S

23A
S

(a) Multiplying a vector by a positive scalar
changes the magnitude (length) of the vector,
but not its direction.

(b) Multiplying a vector by a negative scalar
changes its magnitude and reverses its direction.

S

2A is twice as long as A.
S S

S
23A is three times as long as A and points
in the opposite direction.

15 Multiplying a vector (a) by a positive
scalar and (b) by a negative scalar.

Example 5 Addition of two vectors at right angles

A cross-country skier skis 1.00 km north and then 2.00 km east on
a horizontal snowfield. How far and in what direction is she from
the starting point?

SOLUTION

IDENTIFY and SET UP: The problem involves combining two dis-
placements at right angles to each other. In this case, vector addi-
tion amounts to solving a right triangle, which we can do using the
Pythagorean theorem and simple trigonometry. The target vari-
ables are the skier’s straight-line distance and direction from her

starting point. Figure 16 is a scale diagram of the two displace-
ments and the resultant net displacement. We denote the direction
from the starting point by the angle (the Greek letter phi). The
displacement appears to be about 2.4 km. Measurement with a pro-
tractor indicates that is about 63°.

EXECUTE: The distance from the starting point to the ending point
is equal to the length of the hypotenuse:

211.00 km22 + 12.00 km22 = 2.24 km

f

f

Continued

PhET: Vector Addition
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8 Components of Vectors

In Section 7 we added vectors by using a scale diagram and by using properties

of right triangles. Measuring a diagram offers only very limited accuracy, and

calculations with right triangles work only when the two vectors are perpendicu-

lar. So we need a simple but general method for adding vectors. This is called the

method of components.
To define what we mean by the components of a vector we begin with a

rectangular (Cartesian) coordinate system of axes (Fig. 17a). We then draw the

vector with its tail at O, the origin of the coordinate system. We can represent any

vector lying in the xy-plane as the sum of a vector parallel to the x-axis and a vec-

tor parallel to the y-axis. These two vectors are labeled and in Fig. 17a; 

they are called the component vectors of vector and their vector sum is equal

to In symbols,

(5)

Since each component vector lies along a coordinate-axis direction, we need

only a single number to describe each one. When points in the positive 

x-direction, we define the number to be equal to the magnitude of When

points in the negative x-direction, we define the number to be equal to the

negative of that magnitude (the magnitude of a vector quantity is itself never neg-

ative). We define the number in the same way. The two numbers and 

are called the components of (Fig. 17b).

CAUTION Components are not vectors The components and of a vector are just

numbers; they are not vectors themselves. This is why we print the symbols for compo-

nents in light italic type with no arrow on top instead of in boldface italic with an arrow,

which is reserved for vectors. ❙

We can calculate the components of the vector if we know its magni-

tude A and its direction. We’ll describe the direction of a vector by its angle

relative to some reference direction. In Fig. 17b this reference direction is

the positive x-axis, and the angle between vector and the positive x-axis A
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A little trigonometry (from Appendix B) allows us to find angle :

We can describe the direction as 63.4° east of north or

north of east.

EVALUATE: Our answers 2.24 km and are close to our

predictions. In the more general case in which you have to add two

vectors not at right angles to each other, you can use the law of

cosines in place of the Pythagorean theorem and use the law of

sines to find an angle corresponding to in this example. We’ll see

more techniques for vector addition in Section 8.

f

2f = 63.4°1

90° - 63.4° = 26.6°

 f = 63.4°

 tan f =

Opposite side

Adjacent side
=

2.00 km

1.00 km

f

0 1 km 2 km

1.00 km

2.00 km

Resultant displacement
f

N

EW

S

16 The vector diagram, drawn to scale, for a ski trip.

Test Your Understanding of Section 7 Two displacement vectors, 

and have magnitudes and Which of the following  could

be the magnitude of the difference vector (There may be more than one

correct answer.) (i) 9 m; (ii) 7 m; (iii) 5 m; (iv) 1 m; (v) 0 m; (vi) ❙-1 m.

S
S

� T
S

 ?
T = 4 m.S = 3 mT

S
,S

S

u

(a)

x

y

O

A
S

Ay

S

Ax

S

The component vectors of A
S

u

(b)

x

y

O

A
S

Ax 5 Acosu

Ay 5 Asinu

The components of A
S

17 Representing a vector in terms 

of (a) component vectors and and 

(b) components and (which in this

case are both positive).

AyAx

A
S

yA
S

x

A
S

?
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